Management Algorithms for Pancreatic Cysts and Intraductal Papillary mucinous Neoplasms: The Surgeon’s Perspective

PRESENTED BY
JIN-YOUNG JANG
Department of Surgery, Seoul National University College of Medicine, South Korea

Disclosure of Relevant Financial Relationships

The faculty, committee members, and staff who are in position to control the content of this activity are required to disclose to USCAP and to learners any relevant financial relationship(s) of the individual or spouse/partner that have occurred within the last 12 months with any commercial interest(s) whose products or services are related to the CME content. USCAP has reviewed all disclosures and resolved or managed all identified conflicts of interest, as applicable.

Professor Jin-Young Jang reported no relevant financial relationships

Content

• Background (Changing concept)
• Comparison of Guidelines
• Consideration Points in Decision of Treatment
• Optimal Indication for Surgery (Management Algorithm)

Changes in Epidemiology of Pancreatic Cyst

Age & sex-adjusted incidence: 0.31 → 4.35/100,000 (14-fold)

2.2% of normal population

Klibansky DA, et al., Clin Gastroenterol Hepatol 2012
Chang and Jang, Medicine 2016

Patients Number and Types/Size of IPMN

Patients Number and Types/Size of IPMN

Mixed, 14
BD, 64

Clinical Characteristics

N=2,622 from 71 multicenters, 23 nations

Three serous cystadenocarcinomas (0.1%)

Tumour size and growth rate

Growth rate:
- <4 cm: 1.25 mm/yr
- ≥4 cm: 2.7 mm/yr

Malignancy Potential and Survival

N=351, Korean multi-centers study

Malignant features (28%)
- invasion to adjacent tissues, perineural/lymphovascular invasion,
- metastasis (4%)

International Consensus (15 years ago)

- W. Traverso: The survival curves between invasive IPMN and ductal adenocarcinoma are the same!! We should resect IPMN before they become invasive.
- M. Buchler: We operate all, branch type IPMN except malignancy with nonresectable situation or metastasis....
- C. Yeo: We have been resecting healthy folks with presumed side branch IPMNs. less than 20% are observed.

Content

- Background (Changing concept)
- Comparison of Guidelines
- Consideration Points in Decision of Treatment
- Optimal Indication for Surgery (Management Algorithm)

Numbers of Publication on IPMN

Description of mucin-producing pancreatic carcinoma: Ohhashi et al. Prog Dig Endo 1982.
Surgical Indication of IPMN

Expert opinion

Treatment Guidelines on IPMN

<table>
<thead>
<tr>
<th>Authors (Organization)</th>
<th>Year</th>
<th>Titles or Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hruban</td>
<td>2004</td>
<td>Pathologic consensus</td>
</tr>
<tr>
<td>Tanaka (IAP)</td>
<td>2006</td>
<td>Guideline on Diagnosis & Treatment</td>
</tr>
<tr>
<td>SSAT</td>
<td>2007</td>
<td>Guidelines on Cystic neoplasms of the pancreas</td>
</tr>
<tr>
<td>Tanaka (IAP)</td>
<td>2012</td>
<td>2nd Guideline</td>
</tr>
<tr>
<td>Del Chiaro</td>
<td>2013</td>
<td>European experts consensus</td>
</tr>
<tr>
<td>Buscarini</td>
<td>2014</td>
<td>Italian guideline</td>
</tr>
<tr>
<td>Vege (AGA)</td>
<td>2015</td>
<td>American Gastroenterological Association</td>
</tr>
<tr>
<td>Adsay</td>
<td>2016</td>
<td>Revision on pathologic consensus guideline</td>
</tr>
<tr>
<td>Tanaka (IAP)</td>
<td>2017</td>
<td>3rd Guideline</td>
</tr>
<tr>
<td>Del Chiaro</td>
<td>2018</td>
<td>2nd European Guideline</td>
</tr>
</tbody>
</table>

Comparison of Guidelines on IPMN

Guideline | **Absolute indication for Surgery** | **Relative indication for Surgery** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>European 2018</td>
<td>Jaundice</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enhancing nodule ≥ 5mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MPD ≥ 10mm</td>
<td></td>
</tr>
<tr>
<td>IAP 2013/2017</td>
<td>Jaundice</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enhancing nodule ≥ 5mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MPD ≥ 10mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Positive Cytology</td>
<td></td>
</tr>
<tr>
<td>AGA 2015</td>
<td>Symptomatic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solid component and MPD dilatation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Positive Cytology</td>
<td></td>
</tr>
</tbody>
</table>

Cystic Fluid Cytology

- Specificity 83%
- Sensitivity 35%
- Accuracy 59%

- 33% Inadequate or non-diagnostic

Data from Mount Sinai (Scapeal et al.)

Needs Invasive procedures
Long-term risk of malignancy in BD-IPMN

- Jan. 1994 ~ Dec. 2017 (20 years)
- Single institution (Univ. of Tokyo)

Cumulative Malignancy Rate

- Annual Malignancy Rate: 0.7%
- Cumulative Malignancy Rate: 3.3%

Sensitivity and Specificity of Clinical Guidelines on IPMN

<table>
<thead>
<tr>
<th>Guideline</th>
<th>Sensitivity %</th>
<th>Specificity %</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGA with required cytology</td>
<td>7.3</td>
<td>88.2</td>
</tr>
<tr>
<td>IAP</td>
<td>73.2</td>
<td>45.6</td>
</tr>
</tbody>
</table>

Examples

- 76 year, male
 - Tumor size (mm): 16
 - MPD (mm): 4
 - Mural nodule: +
 - CA19-9: 45
 - European Resection
 - AGA Observation

- 73 year, male
 - Tumor size (mm): 42
 - MPD (mm): 9
 - Mural nodule: -
 - CA19-9: 17
 - IAP Resection
 - Observation

- 75 year, male
 - Tumor size (mm): 42
 - MPD (mm): 12
 - Mural nodule: -
 - CA19-9: 12
 - AGA Observation

Content

- Background (Changing concept)
- Comparison of Guidelines
- Consideration Points in Decision of Treatment
- Optimal Indication for Surgery (Management Algorithm)

Observation vs Resection

- Considering factors
 - **Disease factors**
 - Natural History
 - Malignant potential
 - Symptoms/sign
 - Extent of the disease
 - Location
 - **Host factors**
 - Age
 - Co-morbidity
 - Life expectancy
 - Op. risk
 - Pancreas function
 - Medical accessibility
 - **ETC**
 - Efficacy
 - Morbidity/Mortality
 - Safety
 - Longitudinal risk of at least HGD or IC is time-dependent.

- Optimal Indication for Surgery

Natural History of IPMN

- Malignancy rate according to the type
 - Main duct type: 45-92% (60%)
 - The majority are candidates for resection
 - Branch duct type: 5-50% (20%)
 - Operation or Surgery (optimal indication?)

- Annual Malignancy Rate: 2-3%
Annual growth rate:

- 2001-2016
 - Followed up duration over 3 yrs
 - CT MRI or EUS
 - pleomorphc cyst
 - cl0cked, f1nger tip cyst
duct communication (+)
 - S1pervised by Radiologist

FU duration (month):

- Patient with suspicion of IPMN (n=1,083)
- Uncertain diagnosis (n=4,566)
- Eligible patient (n=1,369)
- Main duct type (n=47)
- Follow up <3year (n=3630)
 - Only sono f/u (n=473)
- Diagnosed as IPMN (n=5,519)

Natural History & Surveillance of IPMN

- Median FU: 60m

Malignancy Rate During Surveillance in BD & Mixed IPMN

- Size
 - ≥3cm: 13.1%
 - 2 ≤<3: 12.8%
- Annual growth rate
 - 0.6 ± 0.9 mm/yr

Optimal Surveillance Interval Based on Growth Rate & Cyst Size

- G1 (0-9.9mm): N=667
 - Cyst size (mm): 7.0 ± 1.9
 - Growth rate (mm/yr): Max. growth rate: 95% CI: 0.6 ± 0.9
 - Median doubling time: 11
 - Minimum doubling time: 1
 - Malignancy Rate: 1.8%
- G2 (10-19.9mm): N=608
 - Cyst size (mm): 13.4 ± 2.6
 - Growth rate (mm/yr): Max. growth rate: 95% CI: 0.5 ± 0.9
 - Median doubling time: 26
 - Minimum doubling time: 1.8
 - Malignancy Rate: 2.3%
- G3 (20-29.9mm): N=84
 - Cyst size (mm): 23.3 ± 2.7
 - Growth rate (mm/yr): Max. growth rate: 95% CI: 1.0 ± 1.5
 - Median doubling time: 23
 - Minimum doubling time: 2.5
 - Malignancy Rate: 2.5%
- G4 (over 30mm): N=10
 - Cyst size (mm): 34.1 ± 9.4
 - Growth rate (mm/yr): Max. growth rate: 95% CI: 1.0 ± 1.2
 - Median doubling time: 34
 - Minimum doubling time: 11.2
 - Malignancy Rate: 3.3%

- Size 10Y worrisome feature (+)
 - ≥3cm: 83.1%
 - 2 ≤<3: 69.6%
- Total: 35.2%
 - 1 ≤<2: 20%
 - <1cm: 7.3%

appearance of worrisome features during surveillance in BD & mixed IPMN

- Han & Jang. Gastroenterol. 2019

- Appearance of Worrisome Features During Surveillance in BD & Mixed IPMN

- Han & Jang. Gastroenterol. 2018

- Revised Surveillance Program by IAP 2017

- Tanaka et al. Pancreatology 2017

- Comparative Effectiveness of Resection vs Surveillance for Pancreatic Branch Duct Intraductal Papillary Mucinous Neoplasms With Worrisome Features

- Hu et al. JAMA Surgery 2019
The Clinical and Socio-Economic Relevance of Increased IPMN Detection Rates and Management Choices

- **Surveillance Strategy**

 Must spend >$20,000/patient to improve quality adjusted life year (QALY)

- **Surgery Strategy**

 $132,436/QALY

 Least deaths from PDAC (5.4%), but 4.7% died due to the surgery

Budde et al. Visceral Medicine 2015

The Clinical and Socio-Economic Relevance of Increased IPMN Detection Rates and Management Choices

- **Surveillance Strategy**

 Must spend >$20,000/patient to improve quality adjusted life year (QALY)

- **Surgery Strategy**

 $132,436/QALY

 Least deaths from PDAC (5.4%), but 4.7% died due to the surgery

Budde et al. Visceral Medicine 2015

Malignancy Potential and Survival

- AGA systematic review-SYSR of invasive IPMN: 40%

5 year survival rate

National Cancer Center, Korea, 2013

Criteria for Resection in BD-IPMN

1st Consensus Guideline (2006)

- >3cm
- Mural nodule (+)
- Duct dilatation
- Cytology (+)
- Symptomatic

2nd Consensus Guideline (2012)

- worrisome feature

High-risk stigmata

- MPD >10 mm
- Enlarged solid component

Revised Criteria for Malignancy Predicting Factors

2nd Consensus Guideline (2012)

- worrisome feature

High-risk stigmata

- Obstructive jaundice
- MPD >10 mm
- Enlarged mural nodule

Worrisome features

- >3cm
- Mural nodule (+)
- Duct dilatation > 5 mm
- Thickened enhanced cyst walls
- Abrupt change in the MPD caliber with distal pancreatic atrophy
- Lymphadenopathy

Tanaka et al. Pancreatology 2012, 2017

Revised Consensus Guideline (2017)

- worrisome feature

High-risk stigmata

- Obstructive jaundice
- MPD >10 mm
- Enlarged mural nodule >10 mm

Worrisome features

- >3cm
- Mural nodule (+)
- Duct dilatation > 5 mm
- Thickened enhanced cyst walls
- Abrupt change in the MPD caliber with distal pancreatic atrophy
- Lymphadenopathy
- Increased serum CA19-9
- Cyst growth rate >5mm/2 yrs

Tanaka et al. Pancreatology 2013
<table>
<thead>
<tr>
<th>Variable</th>
<th>P-value</th>
<th>Sensitivity(%)</th>
<th>Specificity(%)</th>
<th>PPV(%)</th>
<th>NPV(%)</th>
<th>Accuracy(%)</th>
<th>HR</th>
<th>95% CI</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyst size (≥3 cm)</td>
<td>0.057</td>
<td>56.1</td>
<td>53.7</td>
<td>37.4</td>
<td>71.2</td>
<td>54.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPD (>5 mm)</td>
<td>0.001</td>
<td>54.7</td>
<td>78.0</td>
<td>55.1</td>
<td>77.7</td>
<td>70.3</td>
<td>5.32</td>
<td>2.67 – 10.60</td>
<td>0.001</td>
</tr>
<tr>
<td>Mural nodule</td>
<td>0.001</td>
<td>62.8</td>
<td>71.6</td>
<td>60.7</td>
<td>82.7</td>
<td>70.2</td>
<td>6.13</td>
<td>4.68 – 9.00</td>
<td>0.001</td>
</tr>
<tr>
<td>Thicken cystic wall</td>
<td>0.001</td>
<td>56.5</td>
<td>65.0</td>
<td>56.7</td>
<td>76.4</td>
<td>70.4</td>
<td>4.48</td>
<td>1.53 – 13.73</td>
<td>0.004</td>
</tr>
<tr>
<td>Abrupt change in MPD</td>
<td>0.001</td>
<td>19.3</td>
<td>95.9</td>
<td>70.3</td>
<td>70.5</td>
<td>70.4</td>
<td>2.45</td>
<td>0.78 – 7.94</td>
<td>0.124</td>
</tr>
<tr>
<td>Lymphadenopathy</td>
<td>0.002</td>
<td>5.2</td>
<td>99.6</td>
<td>87.5</td>
<td>67.8</td>
<td>68.2</td>
<td>5.79</td>
<td>0.31 – 46.71</td>
<td>0.298</td>
</tr>
<tr>
<td>CEA (>5 ng/mL)</td>
<td>0.046</td>
<td>6.8</td>
<td>97.7</td>
<td>60.7</td>
<td>76.7</td>
<td>67.3</td>
<td>3.58</td>
<td>0.05 – 35.15</td>
<td>0.194</td>
</tr>
<tr>
<td>CA 19-9 (>37 U/mL)</td>
<td>0.001</td>
<td>34.9</td>
<td>92.3</td>
<td>69.9</td>
<td>73.5</td>
<td>72.9</td>
<td>5.25</td>
<td>2.05 – 13.42</td>
<td>0.001</td>
</tr>
<tr>
<td>Cyst growth rate (>5 mm/2 year)†</td>
<td>0.012</td>
<td>60.9</td>
<td>70.3</td>
<td>42.4</td>
<td>83.3</td>
<td>67.8</td>
<td>3.68</td>
<td>0.001</td>
<td></td>
</tr>
</tbody>
</table>

Comparison of diagnostic performance between 2017 and 2012 ICG

<table>
<thead>
<tr>
<th>AUC</th>
<th>LR</th>
<th>SVM1</th>
<th>SVM2</th>
<th>SVM3</th>
<th>RF</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012 IAP</td>
<td>0.746</td>
<td>0.650</td>
<td>0.650</td>
<td>0.650</td>
<td>0.758</td>
</tr>
<tr>
<td>2017 IAP</td>
<td>0.784</td>
<td>0.680</td>
<td>0.686</td>
<td>0.684</td>
<td>0.787</td>
</tr>
</tbody>
</table>

Biomarkers Predicting Malignancy

Hazard Ratio of Malignancy Predicting Factors

<table>
<thead>
<tr>
<th>Variables</th>
<th>Hazard ratio (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPD >5mm</td>
<td>4.538 (2.449 – 8.408)</td>
<td><0.001</td>
</tr>
<tr>
<td>Mural nodule</td>
<td>6.267 (3.271 – 12.009)</td>
<td><0.001</td>
</tr>
<tr>
<td>Thickened cystic wall</td>
<td>1.549 (1.193 – 2.010)</td>
<td>0.023</td>
</tr>
<tr>
<td>Lymphadenopathy</td>
<td>4.966 (1.033 – 23.374)</td>
<td>0.044</td>
</tr>
<tr>
<td>CA 19-9 (>37 U/mL)</td>
<td>4.032 (1.826 – 8.903)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Additive Effect of Malignancy Predicting Factors

<table>
<thead>
<tr>
<th>Variables</th>
<th>Number of Risk Factors</th>
<th>Benign (n=253)</th>
<th>Malignant (n=97)</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor size</td>
<td>0</td>
<td>71</td>
<td>26 (10%)</td>
<td>84.4</td>
</tr>
<tr>
<td>Duct diameter</td>
<td>1</td>
<td>132</td>
<td>24 (18%)</td>
<td>76.5</td>
</tr>
<tr>
<td>Mural nodule</td>
<td>2</td>
<td>41</td>
<td>22 (54%)</td>
<td>67.8</td>
</tr>
<tr>
<td>Thickened cystic wall</td>
<td>3</td>
<td>11</td>
<td>22 (197%)</td>
<td>38.9</td>
</tr>
<tr>
<td>Lymphadenopathy</td>
<td>≥4</td>
<td>8</td>
<td>21 (72%)</td>
<td>38.3</td>
</tr>
</tbody>
</table>

Personalized approach for IPMN

Diagnostic tools (Nomogram) is needed to predict malignancy risk quantitatively in BD-IPMN considering different statistical value of several variables.

- **Malignancy Risk Score**
 - Tumor size
 - Duct diameter
 - Mural nodule
 - Tumor marker
 - Symptoms, etc.

Korea-Japan 1st International collaboration study

Initial enrolled patients (n=2,488)

- Main duct diameter >10mm (n=622)
- Insufficient/incorrect data (n=5)

Proposed Nomogram Predicting the Individual Risk of Malignancy in the Patients With Branch Duct Type Intraductal Papillary mucinous Neoplasms of the Pancreas

- Conclusion: A nomogram predicting malignancy in patients with BD-IPMN was constructed using a logistic regression model. This nomogram may be useful in identifying patients at risk of malignancy and for selecting optimal treatment methods. The nomogram is freely available at http://diagnosis.pcn.annals.org/article/S1072-7515(17)30203-9.
Model development – Internal validation

Evaluate performance – External validation

- 1,000 times boot-strapped Calibration

Global Validation of Nomogram Predicting Malignancy

- Europe
- Karolinska U
- Academic Medical Center
- Verona U
- USA
- Johns Hopkins
- Columbia U
- China
- Peking U
- Fudan U
- Taiwan
- National Taiwan U
- Taipei Veterans H

External Validation - Malignancy prediction

Survival according to Pathology and Nomogram

- Han and Jang, NEJM (Submitted)
Life Expectancy and Quality Adjusted Life Year according to treatment (Surgery vs Surveillance) Using Nomogram

<table>
<thead>
<tr>
<th>Age</th>
<th>Malignancy risk</th>
<th>Surveillance (Mortality 1%)</th>
<th>Surveillance (Mortality 3%)</th>
<th>Surveillance (Mortality 5%)</th>
<th>Surgery (Mortality 1%)</th>
<th>Surgery (Mortality 3%)</th>
<th>Surgery (Mortality 5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td><65</td>
<td><10%</td>
<td>13.22</td>
<td>12.46</td>
<td>11.81</td>
<td>13.29</td>
<td>12.43</td>
<td>11.81</td>
</tr>
<tr>
<td></td>
<td>10~35%</td>
<td>12.48</td>
<td>11.73</td>
<td>11.26</td>
<td>12.41</td>
<td>11.68</td>
<td>11.22</td>
</tr>
<tr>
<td></td>
<td>>35%</td>
<td>11.81</td>
<td>11.24</td>
<td>10.86</td>
<td>12.17</td>
<td>11.66</td>
<td>11.21</td>
</tr>
<tr>
<td>>65</td>
<td><10%</td>
<td>12.46</td>
<td>11.81</td>
<td>11.24</td>
<td>12.64</td>
<td>12.06</td>
<td>11.73</td>
</tr>
<tr>
<td>65-75</td>
<td>10~35%</td>
<td>11.73</td>
<td>11.18</td>
<td>10.65</td>
<td>12.42</td>
<td>11.84</td>
<td>11.47</td>
</tr>
<tr>
<td></td>
<td>>35%</td>
<td>11.24</td>
<td>10.88</td>
<td>10.46</td>
<td>12.14</td>
<td>11.70</td>
<td>11.31</td>
</tr>
<tr>
<td>>75</td>
<td><10%</td>
<td>13.01</td>
<td>12.38</td>
<td>11.89</td>
<td>13.37</td>
<td>12.69</td>
<td>12.21</td>
</tr>
<tr>
<td></td>
<td>10~35%</td>
<td>12.39</td>
<td>11.85</td>
<td>11.42</td>
<td>12.79</td>
<td>12.11</td>
<td>11.71</td>
</tr>
<tr>
<td></td>
<td>>35%</td>
<td>11.89</td>
<td>11.46</td>
<td>11.04</td>
<td>12.37</td>
<td>11.89</td>
<td>11.49</td>
</tr>
</tbody>
</table>

Examples

<table>
<thead>
<tr>
<th>Age</th>
<th>Malignancy risk</th>
<th>Tumor size (mm)</th>
<th>MPD (mm)</th>
<th>Mural nodule</th>
<th>CA19-9</th>
<th>Malignancy risk</th>
<th>Invasive risk</th>
<th>Final pathology</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td><10%</td>
<td>16</td>
<td>4</td>
<td>-</td>
<td>99</td>
<td>47.5%</td>
<td>21.6%</td>
<td>T1N0 invasive</td>
</tr>
<tr>
<td></td>
<td>10~35%</td>
<td>40</td>
<td>2</td>
<td>-</td>
<td>45</td>
<td>17.9%</td>
<td>6.3%</td>
<td>Low grade dysplasia</td>
</tr>
<tr>
<td></td>
<td>>35%</td>
<td>42</td>
<td>10</td>
<td>-</td>
<td>17</td>
<td>44.4%</td>
<td>15.2%</td>
<td>T2N1 invasive</td>
</tr>
<tr>
<td>75</td>
<td><10%</td>
<td>16</td>
<td>4</td>
<td>-</td>
<td>99</td>
<td>47.5%</td>
<td>21.6%</td>
<td>T1N0 invasive</td>
</tr>
<tr>
<td></td>
<td>10~35%</td>
<td>40</td>
<td>2</td>
<td>-</td>
<td>45</td>
<td>17.9%</td>
<td>6.3%</td>
<td>Low grade dysplasia</td>
</tr>
<tr>
<td></td>
<td>>35%</td>
<td>42</td>
<td>10</td>
<td>-</td>
<td>17</td>
<td>44.4%</td>
<td>15.2%</td>
<td>T2N1 invasive</td>
</tr>
<tr>
<td>75</td>
<td><10%</td>
<td>16</td>
<td>4</td>
<td>-</td>
<td>99</td>
<td>47.5%</td>
<td>21.6%</td>
<td>T1N0 invasive</td>
</tr>
<tr>
<td></td>
<td>10~35%</td>
<td>40</td>
<td>2</td>
<td>-</td>
<td>45</td>
<td>17.9%</td>
<td>6.3%</td>
<td>Low grade dysplasia</td>
</tr>
<tr>
<td></td>
<td>>35%</td>
<td>42</td>
<td>10</td>
<td>-</td>
<td>17</td>
<td>44.4%</td>
<td>15.2%</td>
<td>T2N1 invasive</td>
</tr>
</tbody>
</table>

Summary & Conclusion

- Detection of small IPMN has been increasing.
 - Most of BD-IPMN are dormant. Annual malignancy conversion rate 0.2-0.6%.
 - But large cyst over 3cm or growing BD-IPMN must be carefully monitored due to the increasing risk of malignancy.
- Three guidelines have controversies on some issues due to lack of evidences.
 - needs more evidences in a future.
- Tailored approach is needed in selection of surgery or surveillance considering malignancy potential and patient’s factors. Nomogram could be a valuable tool in selecting treatment methods as customized approach for IPMN.