Pancreatic Neoplasms with Acinar Differentiation

PRESENTED BY
Laura D. Wood, MD, PhD
Associate Professor of Pathology, JHUSOM
Important Information Regarding CME/SAMs

The **Online CME/Evaluations/SAMs claim process** will only be available until **September 30, 2019**.

No claims can be processed after that date!

After **September 30, 2019** you will NOT be able to obtain any CME or SAMs credits for attending this meeting.
The faculty, committee members, and staff who are in position to control the content of this activity are required to disclose to USCAP and to learners any relevant financial relationship(s) of the individual or spouse/partner that have occurred within the last 12 months with any commercial interest(s) whose products or services are related to the CME content. USCAP has reviewed all disclosures and resolved or managed all identified conflicts of interest, as applicable.

Laura D. Wood, MD, PhD reported the following relevant financial relationship(s) during the content development process for this activity: *Consultant, Personal Genome Diagnostics*
Case 1

This 60-year-old man presented with arthralgias, peripheral eosinophilia and pockets of fat necrosis in the subcutaneous tissues of his legs. A distal pancreatectomy was performed for a solid pancreatic mass.
If Solid: Hypocellular vs. Cellular

Nature of epithelium & stroma
- Individual glands
- Dendriform pattern
- Myoepithelial neoplasm
- Solid cellular epithelium
- Minimal stromal fibrosis

Pattern of growth
- Adenomatous
- Ribbons or nests
- Mixed mucus

Nuclear features
- Single prominent nucleolus
- Salt & pepper nuclei
- Nuclear grooves
- Ploid cellular nuclei
- Hyperchromatic nuclei

Immunolabeling
- Tropinin: negative
- Synaptophysin: negative
- CD10: negative

Squamous nests
- Yes
- Chronic pancreatitis
- Ductal adenocarcinoma
- Yes
- Pancreatic blastoma
- Acinar cell carcinoma
- Pancreatic neuroendocrine tumor (PanNET)
- Solid pseudopapillary neoplasm
- No
- Serous cystic neoplasm
- Mucinous cystic neoplasm
- Intraductal papillary mucinous neoplasm

Gross configuration
- Solid neoplasm
- Cystic neoplasm

Degenerative vs. True epithelial lining
- Degenerative
- True epithelial lining

Type of epithelium
- Serous
- Mucinous

Type of stroma
- Ovarian
- Collagenous

Six useful features
- Hyperplastic growth pattern
- Intracystic luminal neoplastic necrosis
- Nuclear variability > 2:1
- Growth next to muscular vessel
- Perineural invasion
- Vascular invasion

Based on AFIP Fascicle, 4th Edition
Nature of Epithelium and Stroma

- Hypocellular with desmoplastic stroma
- Cellular with minimal or hyalinized stroma

Solid cellular neoplasms
Solid Cellular Neoplasms

1. Pattern of Growth
2. Nuclear Features
3. Immunolabeling
Pattern of growth: acinar
Pattern of growth: acinar
Nuclear Features: Single Prominent Nucleolus
Nuclear Features: Single Prominent Nucleolus
Pattern of growth
- Acinar
- Ribbons or nests
- Insidious invasion

Nuclear features
- Single prominent nucleolus
- Salt & pepper nuclei
- Nuclear grooves
 - Poorly cohesive cells
 - Foam cells
 - Cholesterol clefs

Immunolabeling
- Trypsin
- Chymotrypsin
- Synaptophysin
- Chromogranin
- CD10
- Nuclear beta-catenin

Diagnosis
- Acinar cell neoplasm
- Pancreatic neuroendocrine tumor (PanNET)
- Solid-pseudopapillary neoplasm
Acinar Cell Carcinoma – Staining

- Zymogen granules – PAS positive, diastase resistant

- Immunohistochemistry
 - 90-100% Bcl10 (homology with carboxyl ester lipase)
 - 90-100% trypsin
 - 75% lipase
 - 40% chymotrypsin
 - 30% amylase
 - 42% synaptophysin/chromogranin (focal)

If >30% of malignant cells show neuroendocrine differentiation:
 mixed acinar–neuroendocrine carcinoma

Capella, Virchow Archives, 2009;454:133-42
BCL10
(carboxyl ester lipase)
Potential IHC Pitfall

- Expression of markers of hepatocellular differentiation
 - >50% positive for at least 1 marker (glypican 3, AFP, albumin mRNA)
 - Arginase uniformly negative

Acinar Cell Carcinomas Involving the Duct System

• Acinar cell carcinomas can involve the pancreatic duct system

• Grow along the pancreatic ducts as extending polypoid projections, filling the ducts and destroying the duct walls

• Metastases to the liver with subsequent intraductal growth in the liver have also been reported

Ban et al, AJSP 34:1025-36.
Intraductal growth can trigger mucin production and mimic mucinous adenocarcinoma
Neoadjuvant treatment can significantly alter morphology

Images from Liz Thompson, MD, PhD
Acinar Cell Carcinomas - Clinical

- Age – mostly adults (mean 62 years)
- Gender – male > female
- Symptoms – usually non-specific with weight-loss, abdominal pain, and nausea and vomiting
- Lipase – about 15% develop the syndrome of arthralgias, eosinophilia and subcutaneous fat necrosis
Stage is the only independent prognostic factor.

Mean Survival = 18.1 mos.

Survival:
- 1 year = 56.5%
- 2 years = 40.0%
- 3 years = 26.3%
- 5 years = 5.9%
Acinar Cell Carcinomas - Molecular

- Striking genetic heterogeneity
 - Microsatellite instability (MSI) in ~10% (no distinctive morphology)
 - Variable allelic losses, sometimes involving a large fraction of the genome – loss of 11p is common (~50%)
 - No gene altered by somatic point mutation in >30%
 - SMAD4 in 30%, also TP53, GNAS, RNF43, APC, CTNNB1, BRAF, PTEN…
 - APC and CTNNB1 mutations raise possibility of overlap with SPN on β-catenin IHC
 - Mutations in DNA repair genes in ~50% - BRCA1, BRCA2, ATM, PALB2, MSH2

- RAF fusions in ~25%, SND1-BRAF most common
 - Result in downstream MAPK activation
 - Can be identified by FISH

Chmielecki et al, Cancer Discov, 2014;4(12):1398-405;
Wang et al, Mod Pathol, 2018;31(1):132-140;
Acinar Cell Carcinomas – Targetable Alterations

• Mostly treated with same chemotherapy regimens as PDACs: minimal data on other approaches

• Genomic data suggests several targetable alterations:
 • **Microsatellite Instability**
 • Immune checkpoint inhibitors
 • **Defects in DNA repair** (*BRCA2*, *ATM*, etc)
 • Platinum agents, PARP inhibitors
 • **RAF fusions**
 • MEK inhibitors
Pancreatic Acinar Cell Carcinoma Demonstrates an Active Tumor Immune Microenvironment

Poster #137, Wed March 20, 1-4pm

David Peske & Liz Thompson
This 10-year-old boy complained for weeks of abdominal pain. Imaging revealed a 10 cm solid mass in his pancreas.
Poll: Which of the following morphological features supports a diagnosis of pancreatoblastoma?
Which of the following morphological features supports a diagnosis of pancreatoblastoma?

A. Acinar differentiation of neoplastic cells

B. Squamoid nests

C. Discohesive architecture
If Acinar: Squamoid Nests?
Acinar Cell Carcinoma
Squamoid Nests Absent

Pancreatoblastoma
Squamoid Nests Present
Pancreatoblastoma - Clinical

- Occurs primarily in children (1-15 years), but there is bimodal age peak
- Malignant neoplasm – 40% present with metastases
- Mean survival 17 months
- Poorer survival in adults
- Can occur as part of inherited syndromes – Beckwith Wiedemann, FAP

Am J Surg Pathol 19:1371
Pancreatoblastoma

- Histologically recapitulates embryologic development

- Acinar component dominates in most cases and merges with squamoid nests
 - Majority of cases show abnormal nuclear and cytoplasmic β-catenin in squamoid nests
 - Other components:
 - Endocrine
 - Ductal
 - Stromal – can show osseous and cartilaginous areas

- Undifferentiated/primitive component
Squamoid nests
Pancreatoblastoma - Molecular

- Allelic loss of 11p is most common genetic alteration
 - Disrupts imprinting at IGF2, leading to overexpression
 - Imprinting at this locus can also be disrupted by methylation

- Activating CTNNB1 mutations are also common
 - APC inactivation can also occur, especially in tumors associated with FAP
 - Abnormal nuclear β-catenin labeling is often present but can be patchy

- Far fewer somatic mutations per tumor than ACC (18 vs 131)
 - No gene other than CTNNB1 reported to have recurrent mutations
 - Larger number of mutations in metastatic samples

Pancreatoblastoma – abnormal β-catenin labeling in squamoid nests
What about cystic lesions with acinar differentiation?
Cystic acinar lesions

- **Acinar cell cystadenoma**
 - Cysts lined by acinar or mixture of acinar/ductal cells
 - Minimal atypia
 - Random X-chromosome inactivation = non-neoplastic
 - May be caused by acinar dilation = “acinar cystic transformation”

- **Acinar cell cystadenocarcinoma**
 - Acinar cell carcinoma characterized by variably sized cysts
 - Malignant neoplasm
 - Very rare

Singhi et al, AJSP, 2013;37(9):1329-35
Colombo et al, Hum Pathol, 2004;35(12):1568-71
Pancreatic Neoplasms with Acinar Differentiation

• **Acinar cell carcinoma**
 - Affects older adults
 - Acinar architecture, single prominent nuclei, BCL10/trypsin IHC+
 - Can involve pancreatic duct system
 - Genomic instability, targetable alterations: MSI, DNA repair defects, RAF fusions

• **Pancreatoblastoma**
 - Most frequent pancreatic neoplasm in children but also affects adults
 - Squamoid nests, other components
 - 11p loss, *CTNNB1* mutations (aberrant β-catenin IHC)
Many images provided by Ralph Hruban, MD
Elizabeth Thompson, MD, PhD
THANK YOU